
6/05/01 1

Virginie Galtier, Yannick Carlinet, Kevin L. Mills,
Stefan Leigh, and Andrew Rukhin

DARPA Active Networks PI Meeting

June 5, 2001

Measurement and Modeling
for Resource Prediction and Control
in Heterogeneous Active Networks

6/05/01 2

Outline of Presentation
Project Quad Chart

Why is the problem important?

Thumbnail: How have we tried to solve the problem?

What have we done in the past 12 months?
Jun 00 to Dec 00: Demonstrate the application of our
work to predict and control CPU usage in active applications
(together with GE, Magician, and AVNMP)
Jan 01 to Jun 01: Turn the demonstrations into
accurately measured, controlled experiments, confirming
results, and writing papers and a Ph.D. dissertation

Summary & What’s next? (1) Future Research (Address Failures)
(2) Prepare code and documentation for release on the project
web site (3) Develop a white-box model

6/05/01 3

Measurement and Modeling for Resource Prediction
and Control in Heterogeneous Active Networks

Projected Impact

Effective policy enforcement provides
security and reliability essential for well-
engineered active nets.

An independent CPU metric permits
resource requirements to be expressed
across a heterogeneous set of active nodes
to support:

• node-level policy enforcement,
• static path-level network admission

control,
• dynamic path-level QoS routing.

Goal
Devise and validate a means to express the CPU time

requirements of a mobile-code application in a form that
can be meaningfully interpreted among heterogeneous
nodes in an active network.

Technical Approach
• Propose abstract mathematical models for active

network nodes and active applications.
• Validate the abstract models against measurements

from real active nodes and applications.
• Prototype validated mechanisms in a node operating

system and evaluate them in live operations.

FY01 Accomplishments
• Demonstrated the application of our work to predictive
estimation and control of resource requirements for an
Active Application. (collaboration with GE research)

• Based on encouraging results from the demonstration,
modified Magician and AVNMP to make more precise
and accurate measurements, and then conducted
controlled experiments to confirm the demonstration.

• Published two papers on the application of our work.

“How Much CPU Time?”

S2
TS2

S3
TS3

Sm
TSm

• • •

S0
Idle

S1
TS1

PS0-S0

TS0-S0

PS0-S2

TS0-S2 PS1-S1 TS1-S1
PS0-S1

TS0-S1

TS1-S0

PS1-S0

PS2-S2

TS2-S2

PS1-S2

TS1-S2

PS2-S1

TS2-S1

PS3-S2 TS3-S2

PS2-S3

TS2-S3

PS3-S3

TS3-S3

PS2-Sm
TS2-Sm

PSm-S2

TSm-S2

PS3-Sm

TS3-Sm

PSm-S3

TSm-S3

PSm-S0TSm-S0

PS0-Sm

TS0-Sm

TSm-Sm

PSm-Sm

PS3-S0 T3-S0

PS0-S3

TS0-S3

TS2-S0

PS2-S0

PSm-S1 TSm-S1

PS1-Sm

TS1-Sm

S2
TS2

S3
TS3

Sm
TSm

• • •• • •

S0
Idle

S1
TS1

PS0-S0

TS0-S0

PS0-S2

TS0-S2 PS1-S1 TS1-S1
PS0-S1

TS0-S1

TS1-S0

PS1-S0

PS2-S2

TS2-S2

PS1-S2

TS1-S2

PS2-S1

TS2-S1

PS3-S2 TS3-S2

PS2-S3

TS2-S3

PS3-S3

TS3-S3

PS2-Sm
TS2-Sm

PSm-S2

TSm-S2

PS3-Sm

TS3-Sm

PSm-S3

TSm-S3

PSm-S0TSm-S0

PS0-Sm

TS0-Sm

TSm-Sm

PSm-Sm

PS3-S0 T3-S0

PS0-S3

TS0-S3

TS2-S0

PS2-S0

PSm-S1 TSm-S1

PS1-Sm

TS1-Sm

6/05/01 4

Growing Population of Mobile
Programs on Heterogeneous Platforms

dlls, dlls, and more dlls

APPLETS &
SERVLETS

SCRIPTING ENGINES & LANGUAGES

Python

MOBILE
AGENTS

C#

6/05/01 5

Sources of Variability

6112,0424414,7315122,800stat

7314,5605317,5916027,066socketcall

6212,3624314,3945022,609write

6312,6063712,3624319,321read

uspccuspccuspccSystem Call

GreenBlackBlue

6112,0424414,7315122,800stat

7314,5605317,5916027,066socketcall

6212,3624314,3945022,609write

6312,6063712,3624319,321read

uspccuspccuspccSystem Call

GreenBlackBlue

VARIABILITY IN EXECUTION ENVIRONMENT

VARIABILITY
IN

SYSTEM CALLS

Processor RAM Persistent

storage

Network

cards

Device

drivers

Scheduler Resources Management

Services

Network

Protocols

Physical layer

Virtual machine layer

OS layer

S1 S2 S3 SnActive Node OS system calls ...

SC1 SC2 SC3 SC4 SCmReal OS system calls ...

AA3

EE2:Magician (java)

AA4
AA1AA2

EE1:ANTS (java)

ANodeOS interface layer

Processor RAM Persistent

storage

Network

cards

Device

drivers

Scheduler Resources Management

Services

Network

Protocols

Physical layer

Virtual machine layer

OS layer

S1 S2 S3 SnActive Node OS system calls ...

SC1 SC2 SC3 SC4 SCmReal OS system calls ...

S1 S2 S3 SnActive Node OS system calls ...S1 S2 S3 SnActive Node OS system calls ...

SC1 SC2 SC3 SC4 SCmReal OS system calls ...SC1 SC2 SC3 SC4 SCmReal OS system calls ...

AA3

EE2:Magician (java)

AA4AA3

EE2:Magician (java)

AA4
AA1AA2

EE1:ANTS (java)

AA1AA2

EE1:ANTS (java)

AA1AA2

EE1:ANTS (java)

ANodeOS interface layer

ANETS ARCHITECTURE 843
167,830

479
159,412

534
240,269

Benchmark
Avg. CPU us
Avg. PCCs

jdk 1.1.6jdk 1.1.6jdk 1.1.6JVM

Linux 2.2.7Linux 2.2.7Linux 2.2.7OS

64 MB128 MB128 MBMemory

PentiumProPentium IIPentium IIProcessor

199 MHz333 MHz450 MHzCPU Speed

GreenBlackBlueTrait

843
167,830

479
159,412

534
240,269

Benchmark
Avg. CPU us
Avg. PCCs

jdk 1.1.6jdk 1.1.6jdk 1.1.6JVM

Linux 2.2.7Linux 2.2.7Linux 2.2.7OS

64 MB128 MB128 MBMemory

PentiumProPentium IIPentium IIProcessor

199 MHz333 MHz450 MHzCPU Speed

GreenBlackBlueTrait

6/05/01 6

Statistically Compare
Simulation Results
against Measured
Data

Simulate
Model with
Monte Carlo
Experiment

236.66120.30130.73Route

321.77320.70330.44Ping
Magician

164.9130.351.90.40Mcast

102.7020.640.90.86Ping
ANTS

Avg. High Per.MeanAvg. High Per.MeanAvg. High Per.MeanAAEE

50 bins-500 reps50 bins-20000 reps100 bins-20000 reps

236.66120.30130.73Route

321.77320.70330.44Ping
Magician

164.9130.351.90.40Mcast

102.7020.640.90.86Ping
ANTS

Avg. High Per.MeanAvg. High Per.MeanAvg. High Per.MeanAAEE

50 bins-500 reps50 bins-20000 reps100 bins-20000 reps

Statistically Compare
Simulation Results
against Measured
Data

Simulate
Model with
Monte Carlo
Experiment

236.66120.30130.73Route

321.77320.70330.44Ping
Magician

164.9130.351.90.40Mcast

102.7020.640.90.86Ping
ANTS

Avg. High Per.MeanAvg. High Per.MeanAvg. High Per.MeanAAEE

50 bins-500 reps50 bins-20000 reps100 bins-20000 reps

236.66120.30130.73Route

321.77320.70330.44Ping
Magician

164.9130.351.90.40Mcast

102.7020.640.90.86Ping
ANTS

Avg. High Per.MeanAvg. High Per.MeanAvg. High Per.MeanAAEE

50 bins-500 reps50 bins-20000 reps100 bins-20000 reps

Trace is a series of system calls and
transitions stamped with CPU time use

AA2

EE1:ANTS (java)

read write kill...
ANodeOS interface

OS layer
Physical layer

Generate
Execution Trace

Monitor at
System Calls

in Active Node OS

…
begin, user (4 cc), read (20 cc), user (18 cc),
write(56 cc), user (5 cc), end

begin, user (2 cc), read (21 cc), user (18 cc), �
kill (6 cc), user (8 cc), end

begin, user (2 cc), read (15 cc), user (8 cc),
kill (5 cc), user (9 cc), end

begin, user (5 cc), read (20 cc), user (18 cc),
write(53 cc), user (5 cc), end

begin, user (2 cc), read (18 cc), user (17 cc),
kill (20 cc), user (8 cc), end
…

Trace is a series of system calls and
transitions stamped with CPU time use

AA2

EE1:ANTS (java)

read write kill...
ANodeOS interface

OS layer
Physical layer

Generate
Execution Trace

Monitor at
System Calls

in Active Node OS

Trace is a series of system calls and
transitions stamped with CPU time use

AA2

EE1:ANTS (java)

read write kill...read write kill...
ANodeOS interface

OS layer
Physical layer

Generate
Execution Trace

Monitor at
System Calls

in Active Node OS

…
begin, user (4 cc), read (20 cc), user (18 cc),
write(56 cc), user (5 cc), end

begin, user (2 cc), read (21 cc), user (18 cc), �
kill (6 cc), user (8 cc), end

begin, user (2 cc), read (15 cc), user (8 cc),
kill (5 cc), user (9 cc), end

begin, user (5 cc), read (20 cc), user (18 cc),
write(53 cc), user (5 cc), end

begin, user (2 cc), read (18 cc), user (17 cc),
kill (20 cc), user (8 cc), end
…

Our Approach in Thumbnail

Scenario A:
sequence = “read-write”,
probability = 2/5

Scenario B:
sequence = “read-kill”,
probability = 3/5

Distributions of CPU time in system calls
:

Generate
Active Application Model

Distributions of CPU time between system calls :

0 5 10 15 20

0.8

0.2

P

cc

read

write kill

0 5 10 15 20

0.67
0.33

cc

P
read-kill

write-end

begin-read read-write

kill-end

Scenario A:
sequence = “read-write”,
probability = 2/5

Scenario B:
sequence = “read-kill”,
probability = 3/5

Distributions of CPU time in system calls
:

Generate
Active Application Model

Distributions of CPU time between system calls :

0 5 10 15 20

0.8

0.2

P

cc

read

write kill

0 5 10 15 20

0.67
0.33

cc

P

0 5 10 15 20

0.67
0.33

cc

P
read-kill

write-end

begin-read read-write

kill-end

Scaling AA Models
AA model on node X:
read 30 cc
user 10 cc
write 20 cc

Model of node X:
read 40 cc
write 18 cc
user 13 cc

Model of node Y:
read 20 cc
write 45 cc
user 9 ccscale

AA model on node Y:
read 30*20/40 = 15 cc
user 10*9/13 = 7 cc
write 20*45/18 = 50 cc

Scaling AA Models
AA model on node X:
read 30 cc
user 10 cc
write 20 cc

Model of node X:
read 40 cc
write 18 cc
user 13 cc

Model of node Y:
read 20 cc
write 45 cc
user 9 ccscale

AA model on node Y:
read 30*20/40 = 15 cc
user 10*9/13 = 7 cc
write 20*45/18 = 50 cc

AA model on node X:
read 30 cc
user 10 cc
write 20 cc

Model of node X:
read 40 cc
write 18 cc
user 13 cc

Model of node Y:
read 20 cc
write 45 cc
user 9 ccscale

AA model on node Y:
read 30*20/40 = 15 cc
user 10*9/13 = 7 cc
write 20*45/18 = 50 cc

6/05/01 7

What have we done in the
past 12 months?

Jun 00 to Dec 00: Demonstrated the application of our
work to predict and control CPU usage in active applications
(together with GE, Magician, and AVNMP)

Jan 01 to Jun 01: Turned the demonstrations into
accurately measured, controlled experiments, confirming
results, and writing papers and a Ph.D. dissertation

6/05/01 8

Control Demo Revisited
Policy 1: Use CPU time-to-live set to fixed value per packet
Policy 2: Use a CPU usage model, but scaled naively based solely on CPU speed
Policy 3: Use a well-scaled NIST CPU usage model

Naïve Scaling

High Fidelity

Malicious Packet dropped too late
(CPU use reached TTL)

TTL

Normal execution time CPU time “stolen”

Fastest
Intermediate

Node

Slowest
Intermediate

Node

Destination
node

Sending
node

Malicious
packet

Good
packets

Good
packets

Good packet dropped early
(CPU use reached TTL)

TTL

CPU time
“wasted”

Additional CPU
time needed

Malicious Packet dropped too late
(CPU use reached TTL)

TTL

Normal execution time CPU time “stolen”

Malicious Packet dropped too late
(CPU use reached TTL)

TTL

Normal execution time CPU time “stolen”

Fastest
Intermediate

Node

Slowest
Intermediate

Node

Destination
node

Sending
node

Malicious
packet

Good
packets

Good
packets

Fastest
Intermediate

Node

Slowest
Intermediate

Node

Destination
node

Sending
node

Sending
node

Malicious
packet

Good
packets

Good
packets

Good packet dropped early
(CPU use reached TTL)

TTL

CPU time
“wasted”

Additional CPU
time needed

Good packet dropped early
(CPU use reached TTL)

TTL

CPU time
“wasted”

Additional CPU
time needed

6/05/01 9

TTLTTL

Prediction Demo Revisited

Time

L-3

L-2

L-4

AN-5

AN-4 Operational
Network

Shadow, Prediction-Overlay Network

L-1 L-3

L-2

L-4

AN-5AN-1

AN-4
DP

LP
LP

LP

L-1

AN-1

Space

Time

L-3

L-2

L-4

AN-5

AN-4 Operational
Network

Shadow, Prediction-Overlay Network

L-1 L-3

L-2

L-4

AN-5AN-1

AN-4
DP

LP
LP

LP

L-1

AN-1

Space

With the NIST CPU usage model integrated, AVNMP requires fewer rollbacks
And so AVNMP can predict CPU usage in the network further into the future

DPDP
Predictor

Driver
PP
LP

PP
LP

Sending
node

Fastest
Intermediate

Node

Destination
node

Slowest
Intermediate

Node

Green Black Red Yellow

DPDP
Predictor

Driver

DPDP
Predictor

Driver
PP
LP
PP
LP

PP
LP
PP
LP

Sending
node

Fastest
Intermediate

Node

Destination
node

Slowest
Intermediate

Node

Green Black Red Yellow

CPU PredictionCPU Prediction

6/05/01 10

• Completed true integration of NIST LINUX kernel measurement code with
Magician and AVNMP control and prediction code (in Java)

• Modified AVNMP MIB to distinguish between CPU vs. packet stimulated
rollbacks (and to prevent periodic resetting of values)

• Recalibrated demonstration nodes (and evaluated the calibrations and our
models using selected Magician AAs – ping, route, activeAudio – new results
given on next slide)

• Ran the two demonstrations again, but this time as controlled experiments
(new results given on subsequent slides)

• Wrote two papers describing the control and prediction experiments

• Completed draft dissertation (Virginie Galtier)

From Demo to Experiment

6/05/01 11

Evaluating Scaled AA Models
Prediction Error Measured when Scaling Application Models between Selected Pairs of Nodes

vs. Scaling with Processor Speeds Alone (MAGICIAN EE)

NEW RESULTS -- MAY 2001 Scaling with
model

Scaling with
processors

speeds

AA Node
X

Node
Y Mean

Avg.
High
Perc.

Mean
Avg.
High
Perc.

K B 18 12 49 32
R G 21 32 74 72
R K 3 14 18 16
Y K 8 18 84 81Pi

ng

G Y 4 18 193 160
K Y 16 22 341 404
Y R 2 14 76 75
K B 6 13 13 30
G K 13 11 46 52R

ou
te

Y G 2 21 57 58
Y B 11 27 85 83
K Y 13 14 400 399
G Y 9 10 80 143
G B 9 17 74 58A

ud
io

Y K 7 12 80 80

6/05/01 12

Experiment #1: Control Execution of Mobile Code

Fastest
Intermediate

Node

Slowest
Intermediate

Node

Destination
node

Sending
node

Malicious
packet

Good
packets

Good
packets

Malicious Packet dropped too late
(CPU use reached TTL + tolerance)

Needed
execution time

CPU time “stolen”

TTL

Good packet dropped early
(CPU use reached TTL + tolerance)

TTL

CPU time
possibly “wasted” Additional CPU

time needed
When mobile code CPU usage
controlled with fixed allocation or
TTL, malicious or “buggy” mobile
programs can “steal” substantial CPU
cycles, especially on fast nodes

When mobile code CPU usage controlled with
fixed allocation or TTL, correctly coded
mobile programs can be terminated too soon
on slow nodes, wasting substantial CPU cycles

Goals: (1) Show reduced CPU usage by terminating malicious packets earlier AND
(2) Show fewer terminations of good packets

6/05/01 13

CPU Control: Experiment Results

7.63
(6.3% estimated CPU time saved)

8.15Estimated Average CPU Utilization (ms/packet)
Fast Intermediate Node

10 (0.4%)72 (3%)Good Packets Killed (all nodes)

NIST CPU ModelFixed TTL ModelMetric

36.35NIST Model Threshold
99th percentile

39.87Time-to-Live (ms)

379Malicious Packets

2278Good Packets

ValueParameter

Difference in Per Packet CPU Usage (TTL - NIST Model)

-1

-0.5

0

0.5

1

1.5

Measurement Interval

S
av

in
g

s
in

 C
P

U
 U

se
 (

m
s

p
er

 p
ac

ke
t)

0.5Predicted CPU time saved
(ms/packet) [ANALYSIS]

Predicted vs. Measured

0.52Estimated CPU time saved
(ms/packet) [EXPERIMENT]

Summary of Results

Experiment Parameters

Results vs. Prediction

6/05/01 14

Experiment #2: Predict CPU Usage
among Heterogeneous Network Nodes

AVNMP AA

Source
Node

Fastest
Intermediate

Node

Destination
Node

Slowest
Intermediate

Node

Active Audio
CPU Model
Generation

Magician AAs

500000 1 106 1.5 106 2 106 2.5 106 3 106
Wallclock mS

50

100

150

200

PredictionError Accuracy

Logical

Process
Active
Audio

AA

Magician EE
MIB

AVNMP LPs predict
number of messages
and CPU use and
update predicted
MIB values on nodes

Magician EEs
update actual
MIB values for
CPU use and
number of
messages

Active Audio CPU usage
model injected into AVNMP
LP on each node

Logical

Process

CPU
Model

Driver

Process

Message
Model

CPU
Model

Active
Audio

AA

AVNMP LPs determine
prediction error, compare
against tolerance, initiate
rollbacks, and display graphs

Virtual
Messages

Real Messages

AVNMP AA

Source
Node

Fastest
Intermediate

Node

Destination
Node

Slowest
Intermediate

Node

Active Audio
CPU Model
Generation

Magician AAs

500000 1 106 1.5 106 2 106 2.5 106 3 106
Wallclock mS

50

100

150

200

PredictionError Accuracy

500000 1 106 1.5 106 2 106 2.5 106 3 106
Wallclock mS

50

100

150

200

PredictionError Accuracy

Logical

Process
Active
Audio

AA

Active
Audio

AA

Magician EE
MIB

AVNMP LPs predict
number of messages
and CPU use and
update predicted
MIB values on nodes

Magician EEs
update actual
MIB values for
CPU use and
number of
messages

Active Audio CPU usage
model injected into AVNMP
LP on each node

Logical

Process

CPU
Model

Logical

Process

CPU
Model

Driver

Process

Message
Model

CPU
Model

Active
Audio

AA

Active
Audio

AA

AVNMP LPs determine
prediction error, compare
against tolerance, initiate
rollbacks, and display graphs

Virtual
Messages

Real Messages

Goals: (1) Show improved look ahead into virtual time AND
(2) Show fewer tolerance rollbacks in the simulation

6/05/01 15

CPU Prediction: Experiment Results

Look Ahead - NIST Model vs. TTL

0

100

200

300

400

500

600

700

800

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93

Measurement Interval

Lo
gi

ca
l V

irt
ua

l T
im

e
(s

ec
s)

NIST Model

TTL

Tolerance Rollbacks NIST vs. TTL

0

10

20

30

40

50

60

70

80

90

100

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91

Measurement Interval

R
ol

lb
ac

ks

NIST Model

TTL

20674793Tolerance
Rollbacks

284370265Maximum
Look-ahead (s)

Slow
Node

Fast
Node

Slow
Node

Fast
Node

Metric

NIST ModelTTL

Fast Node Fast Node

Summary of Results

710.112.18.8
Avg. Measurement
Interval (s)

163,34790,00069,300234,075
Error Tolerance
+-10% (ccs)

16.5
1,633,478

3
900,000

7
693,000

7
2,340,750

Avg. CPU Time
(ms and ccs)

Slow
Node

Fast
Node

Slow
Node

Fast
Node

Parameter

NIST ModelTTL

Experiment Parameters

6/05/01 16

Publications Since June 2000
Papers
Y. Carlinet, V. Galtier, K. Mills, S. Leigh, A. Rukhin, “Calibrating an Active Network

Node,” Proceedings of the 2nd Workshop on Active Middleware Services, ACM,
August 2000.

V. Galtier, K. Mills, Y. Carlinet, S. Leigh, A. Rukhin, “Expressing Meaningful Processing
Requirements among Heterogeneous Nodes in an Active Network,” Proceedings of
the 2nd International Workshop on Software Performance, ACM, September 2000.

V. Galtier, K. Mills, Y. Carlinet, S. Bush, and A. Kulkarni, “Predicting and Controlling
Resource Usage in a Heterogeneous Active Network”, accepted by 3rd International
Workshop on Active Middleware Services, ACM, August 2001.

V. Galtier, K. Mills, Y. Carlinet, S. Bush, and A. Kulkarni, “Predicting Resource Demand
in Heterogeneous Active Networks”, accepted by MILCOM 2001, October 2001.

Dissertation
V. Galtier, Toward finer grain management of computational resources in heterogeneous

active networks (Vers une gestion plus fine des ressources de calcul des réseaux
actifs hétérogènes), Henri Poincaré University Nancy I, Advisors: André Schaff and
Laurent Andrey, projected graduation October 2001.

Papers available on the project web site: http://w3.antd.nist.gov/active-nets/

6/05/01 17

Future Research (& Failures)

Improve Black-box Model (recent failures)
Space-Time Efficiency
Account for Node-Dependent Conditions
Characterize Error Bounds

Investigate Alternate Models
White-box Model (currently underway)
Lower-Complexity Analytically Tractable Models (original failure)
Models that Learn

Investigate Prediction based on Competition
Run and Score Competing Predictors for Each Application
Reinforce Good Predictors
Use Prediction from Best Scoring Model

6/05/01 18

Additional Work Since June 2000
Investigating white-box approach to model CPU needs for mobile code

p5s5t5intValue

p1s1t1deliverToApp

p6s6t6routeForNode

p4s4t4getDst

p3s3t3getCache

p2s2t2getAddress

99th PStd DevAvg.EE Function

Calibrated CPU Usage Integer f = (Integer)n.getCache().get(getDst())
if (f != null) { next = f.intValue();

if (n.getAddress() != getDst())
{ return n.routeForNode(this, next); }

else { return n.deliverToApp(this, dpt); }

Active ApplicationCalibrate EE by Functions

Active Application Model
L = delay (t3 + t4)

if (c1) {delay (t5 + t2 + t4)
if (c2) delay (t6)}

else {delay (t1)}

For each arriving packet,
determine conditions
and sum delays based
on EE function
calibration.

14931455255224475Measured

500484239224318Predicted
99th Percentile

200351165154156Measured

9624012261163Predicted
Standard Deviation

334250197172150Measured

333183175164205Predicted
Average

AA5AA4AA3AA2AA1Statistic
Some Preliminary Results (using the PLAN EE) – all times are us/packet

